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Abstract. The inertial (IP) and anthropometrical (AP) parameters of human body are mostly estimated from 
coefficients issue from cadaver measurements. These parameters could involve errors in the calculation of joint 
torques during explosive movements. The purpose of this study was to optimize the IP and AP in order to 
minimize the residual torque and force during squat jumping. Three methods of determination have been 
presented: method A: optimizing AP and IP of each body part; method B: optimizing trunk AP and IP, assuming 
that the AP and IP of the lower limbs were known; method C: using Winter AP and IP. For each method, the value 
(degree 0), the integral (degree 1) and the double integral (degree 2) of the residual moment were also used. The 
method B with degree 2 was the most accurate to determine trunk AP and IP by minimizing the residual force 
and torque, by providing a linear least squares system. Instead of minimizing the residual force and torque, by 
classical way, the double integral of the latter provided more accurate results. 

1. Introduction 
Joint forces and torques are commonly used in motion analysis for orthopedics, ergonomics or sports science 

[1, 2]. A standard bottom-up inverse dynamic model is often used to calculate joint forces and torques at the 
lower extremity. Body anthropometric (AP) and inertial parameters (IP) are needed to apply inverse dynamic 
model. AP and IP can be obtained from many ways. Cadaver measurements have been the first method applied by 
researchers and is still commonly used [3–7]. Then, predictive linear or non-linear equation [8–12] and imaging 
resonance magnetic techniques [13–17] have been elaborated. In Hatze study [18], the author has been interested 
in the accuracy of the different methods. He observed that the methods using γ ray, X ray, tomography and 
imaging resonance magnetic techniques presented an average accuracy of 5% with a maximal error of 11%. 
Linear regression yields AP and IP with an average accuracy of about 24% with a maximal error of 40%. The 
corresponding values for non-linear regression were 16% and 38% respectively. According to Hatze [18], the 
most accurate technique would be the anthropometrico-computational method with 1.8% of average accuracy 
and 3% of maximal error.  

Some authors tried to evaluate the influence of error in AP and IP on joint torques during gait analyses. In 
[19], the authors compared joint torques during walking using cadaver AP and IP [7] versus direct 
measurements [20]. In [21], 6 methods to calculate AP and IP were compared. Even if these methods provided 
different AP and IP, no effect on torque measurements were pointed out during walking.  Nevertheless, in [21], 
the authors concluded that changes in AP and IP should have a greater influence on the torque measurements for 
activities involving greater accelerations. This is the case in squat jumping, where the push-off lasts around 350 
ms, and the acceleration of the body center mass could reach 20 m.s-2. Researchers mainly use cadaver 
measurements [22–27] or predictive equations [28–34] during studies about vertical jumping. However these 
methods give AP and IP which are not specific to the population studied. As a result, some errors in AP and IP 
could imply inaccuracy in joint torque calculations.  

Besides, to the best of our knowledge, no study has focused on the optimization of AP and IP in explosive 
movements and especially in 2-D squat jumping investigation. Therefore the purpose of this study was to adjust 
AP and IP of the human segments during squat jumping in order to minimize error in joint torque values. 
Especially, the optimization will focus on the ”head arm trunk” segment (HAT).  

 



2. Methods 
2.1 Experimental acquisition 

Twelve healthy athletic male adults (mean ± SD: age, 23.2 ± 3.6 years; height, 1.75 ± 0.06 m; mass, 69.1 ± 8.2 
kg) volunteered to participate in the study and provided informed consent. Prior to the experimental protocol, 
reflective landmarks were located on the right 5-th metatarsophalangeal, lateral malleolus, lateral femoral 
epicondyle, greater trochanter and acromion. Thereafter, the subjects performed at most ten maximal squat 
jumps. In order to avoid the contribution of the arms in vertical jump height [29, 31], the subjects were 
instructed to keep their hands on their hip throughout the jump.  

All jumps were performed on an AMTI force plate model OR6-7-2000 sampled at 1000 Hz. Countermovement 
defined as a decrease of vertical ground reaction force (Ry ) before the push-off phase was not allowed. 

The beginning of the push-off was considered as the instant when the derivative of the smoothed Ry is 
different to zero. Simultaneously, the subjects were filmed in the sagittal plane with a 100 Hz camcorder (Ueye, 
IDS UI-2220SE-M-GL). The optical axis of the camcorder was perpendicular to the plane of the motion and 
located at 4 meters from the subject. 

Jumps recorded were digitalized frame by frame with the Loco software (Paris, France). A four rigid 
segments model composed of the foot (left and right feet together), the shank (left and right shanks together), the 
thigh (left and right thighs together) and the HAT (head, arms and trunk) was used. Squat jump being a 
symmetrical motion, the lower limb segments were laterally combined together and it was supposed that the left 
and right sides participate equivalently to the inter- articular efforts. The position of the upper limbs is fixed to 
limit their influence on I4. Moreover the objective is to provide a robust estimate of the I4 according to a given 
protocol and to observe that it is different from that of Winter. 

Data obtained from the video and the force platform were synchronized and then smoothed in order to be 
derivated one or twice. 

 
2.2 Calculation of residual error 
 

The dynamics equations applied to each of the segments [AjAj+1], for j ∈ {1, …, q-1}, give 
 

𝑅𝚥���⃗ −  𝑅𝚥+1��������⃗ = −𝑚𝑗�⃗� + 𝑚𝑗  𝑑²𝑂𝐺𝚥��������⃗

𝑑𝑡²
      (1a) 

−𝑀𝑗 + 𝐼𝑗�̈�𝑗 = 𝐶𝑗 − 𝐶𝑗+1        (1b) 

 
where 
 

𝑀𝑗 =  −�𝑥𝑗+1 − 𝑥𝑗��𝛼𝑗𝑅𝑦,𝑗 + �1 − 𝛼𝑗�𝑅𝑦,𝑗+1� + �𝑦𝑗+1 − 𝑦𝑗��𝛼𝑗𝑅𝑥,𝑗 + �1 − 𝛼𝑗�𝑅𝑥,𝑗+1�  (2) 

 
With boundary condition 
 

𝑅1����⃗ = 𝑅�⃗   ,   𝑅�⃗ 𝑝 = 0�⃗         (3) 

𝐶1 = 𝐶  ,   𝐶𝑞 = 0        (4) 

 



We obtain classically for all k ∈ {1, …, q-1}, 
 

𝑅�⃗ 𝑘 =  𝑅�⃗ −  � 𝑚𝑗

𝑘−1

𝑗=1

�
𝑑²𝑂𝐺𝚥������⃗

𝑑𝑡²
− �⃗�� 

𝐶𝑘 =  𝐶 + ��𝑀𝑗 − 𝐼𝑗�̈�𝑗�
𝑘−1

𝑗=1

 

 

(5a) 
 

 

(5b) 

 
and 
 

𝐶 = − � 𝑀𝑗 −  � 𝐼𝑗�̈�𝑗

𝑞−1

𝑗=1

𝑞−1

𝑗=1

 

 

(5c) 

 
The residual torque is defined by 

�̃� = 𝐶 + � 𝑀𝑗 −  � 𝐼𝑗�̈�𝑗

𝑞−1

𝑗=1

𝑞−1

𝑗=1

 
 

(6)

Where angles θj are determined from the smoothed displacements, Mj are defined by (2) and joint forces Rx,j 

and Ry,j are calculated by using (5a). 
We now explain how to determine I1, I2, I3 and I4. The residual torque is defined by (6) or by the following 
equation:  

�̃�(0)(𝑡) =  𝐶𝑒𝑥𝑝 −  𝐶𝑎𝑛𝑔𝑙       (7a) 

 
Where Cexp is torque measured experimentally and 
 

𝐶𝑎𝑛𝑔𝑙 =  − � 𝑀𝑗 + � 𝐼𝑗�̈�𝑗

𝑞−1

𝑗=1

𝑞−1

𝑗=1

 
 

(7b) 

 
is defined according to moments Mj and the double derivatives �̈�𝑗. X(0) corresponds to the values of function 
X. 
 
 
 
The impulsion phase is equal to [t0, tf]. 
By integration, between the beginning t0 and ti, and since the angular velocities are null at onset of push-off, 
we obtain 
 



�̃�(1)(𝑡𝑖) =  𝐶𝑒𝑥𝑝
(1) (𝑡𝑖) − 𝐶𝑎𝑛𝑔𝑙

(1) (𝑡𝑖) 

𝐶𝑒𝑥𝑝
(1) (𝑡𝑖) = � 𝐶𝑒𝑥𝑝(𝑠)𝑑𝑠

𝑡𝑖

𝑡0

 

𝐶𝑎𝑛𝑔𝑙
(1) (𝑡𝑖) = − � � 𝑀𝑗(𝑠)𝑑𝑠 + 

𝑡𝑖

𝑡0

𝑞−1

𝑗=1

� 𝐼𝑗�̇�𝑗(𝑡𝑖)
𝑞−1

𝑗=1

 

(8a) 
 

(8b) 
 

(8c) 

 
Where s is the variable of integration. X(1) corresponds to the first order integration of the function X. After a 
second integration we obtain:  

�̃�(2)(𝑡𝑖) =  𝐶𝑒𝑥𝑝
(2) (𝑡𝑖) − 𝐶𝑎𝑛𝑔𝑙

(2) (𝑡𝑖) 

𝐶𝑒𝑥𝑝
(2) (𝑡𝑖) = � � 𝐶𝑒𝑥𝑝(𝑠)𝑑𝑠

𝑢

𝑡0

𝑡𝑖

𝑡0

𝑑𝑢 

𝐶𝑎𝑛𝑔𝑙
(2) (𝑡𝑖) = − � � � 𝑀𝑗 (𝑠)𝑑𝑠𝑑𝑢

𝑢

0
+ 

𝑡𝑖

𝑡0

𝑞−1

𝑗=1
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𝑞−1
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(9a) 
 

(9b) 
 

(9c) 

 
Where u is the second variable of integration. X(2) corresponds to the second order integration of the 
function X. In order to compare the residual values �̃�(0) , �̃�(1)  and �̃�(2)  obtained with different 
methods, it is necessary to normalize these values by considering the dimensionless quantity 
defined by 
 

𝜀(𝑗) =  
�𝐶𝑒𝑥𝑝

(𝑗) − 𝐶𝑎𝑛𝑔
(𝑗) �

�𝐶𝑒𝑥𝑝
(𝑗) � + �𝐶𝑎𝑛𝑔

(𝑗) �
 ∈ [0,1] 

 

(10) 

 
Where ||  || is the l² norm 
 
2.3 Methods of determination IP and AP 
2.3.1 Method A: optimization of all inertia  I1, I2, I3 and I4 

 
Considering that the residual is null, (7), (8), and (9) become 

� 𝐼𝑗�̈�𝑗

𝑞−1

𝑗=1

(𝑡𝑖) = 𝐶(𝑡𝑖) + � 𝑀𝑗(𝑡𝑖)
𝑞−1

𝑗=1

 

 

(11a) 

 
or 

� 𝐼𝑗�̇�𝑗

𝑞−1
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𝑡𝑖
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(11b) 



 
or 

� 𝐼𝑗�𝜃𝑗(𝑡𝑖) − 𝜃𝑗(𝑡0)�
𝑞−1

𝑗=1

= � � �𝐶(𝑠) + � 𝑀𝑗(𝑠)
𝑞−1

𝑗=1

� 𝑑𝑠𝑑𝑢
𝑢

𝑡0

𝑡𝑖

𝑡0

 

 

(11c) 

 
As the method used in Section 2.2 to determine α4 , for Eq. (9), the double derivative of angles is not used for 
(11c), 
but only values of these angles. 
 
Each equation (11) is equivalent to determine I1, I2, I3 and I4 such that 
 

∀𝑖, � 𝐴𝑖,𝑗𝐼𝑗

𝑞−1

𝑗=1

= 𝐵𝑖 

 

(12) 

 
where Ai, j  and Bi  are known. Theses equations are equivalent to the overdetermined linear system 
 

𝐴𝐼 = 𝐵, 𝑤ℎ𝑒𝑟𝑒 𝐼 = �

𝐼1
𝐼2
𝐼3
𝐼4

� 

 

(13) 

 
which has no solution in the general case, but has a least square sens solution. In this case, the number j ∈ { 0, 1, 
2}  is called the degree of the method A; the number ε( j), defined by (10) is denoted 𝜀𝐴

(𝑗) and the coefficient of 
multiple determination for the overdetermined system (13) is denoted 𝑅𝐴

2(𝑗). 
 
2.3.2 Method B: optimization of inertia I4 only 
 

It can be assumed that I1, I2 and I3 are determined in [11]. Then (7), (8), or (9) can be written under the 
following form: for all i , 

𝐼𝑞 − 1�̈�𝑞−1(𝑡𝑖) =  −  � 𝐼𝑗�̈�𝑗(𝑡𝑖) +
𝑞−2

𝑗=1

𝐶(𝑡𝑖) + � 𝑀𝑗(𝑡𝑖)
𝑞−1

𝑗=1

 

𝐼𝑞 − 1�̇�𝑞−1(𝑡𝑖) =  −  � 𝐼𝑗�̇�𝑗(𝑡𝑖) + � �𝐶(𝑠) + � 𝑀𝑗(𝑠)
𝑞−1

𝑗=1

� 𝑑𝑠
𝑡𝑖

𝑡0

𝑞−2

𝑗=1

 

 

(14a) 
 
 

(14b) 

 
or 
 

𝐼𝑞−1�𝜃(𝑡𝑖) − 𝜃𝑞−1(𝑡0)� = − � 𝐼𝑗�𝜃𝑗(𝑡𝑖) − 𝜃𝑗(𝑡0)� + � � �𝐶(𝑠) + � 𝑀𝑗(𝑠)
𝑞−1

𝑗=1

� 𝑑𝑠𝑑𝑢
𝑢

𝑡0

𝑡𝑖

𝑡0

𝑞−2

𝑗=1

 
(14c) 



 
Here, it is also equivalent to find I4  such that 
 

∀i, yi = I4xi.         (15) 
 

As previously, we consider  𝜀𝐵
(𝑗) and 𝑅𝐵

2(𝑗). 
 
2.2.3 Method C: values of inertia  I1, I2, I3 and I4 according to Winter coefficients 

The values of I1, I2, I3 and I4 are estimated from [11]. As previously, we consider 𝜀𝐶
(𝑗) and 𝑅𝐶

2(𝑗) . This method 
is not an optimization method and 𝑅𝐶

2(𝑗) is formally defined; this number is not necessarily positive. 
 

To summarize, we have three methods defined by X ∈ { A, B, C}  and for each of them the order j  belongs 
to j ∈ { 0, 1, 2}. The method X  with degree j is called method « Xj ».  For example « A2 » is the method A with 
degree 2. For each of these three methods and for each degree j are defined 𝜀𝐶

(𝑗) and 𝑅𝐶
2(𝑗). An accurate method 

corresponds to ε close to 0 and R2 close to 1. 
 
 
2.4 Statistics 

Main effects of the three methods and the three degrees based on ”residual error” were tested to 
significance with a general linear model one way ANOVA for repeated measures. When a significant F value 
was found, post-hoc Tukey tests were applied to establish difference between methods (significant level p < 
0.05). All analyses were proceeding through the R software [46]. 
 

3. Results 
The results compared the methods defined by X∈{Α,B,C} and degree j∈{0,1,2} and called “Xj”. Values of 
Log10(ε) and Log10(1-R²) are given in tables 1 and 2. 
 

Table 1. Groups statistics of Log10(ε) for the three studied methods with the three degrees: mean ± standard 
deviation 

 
degree j method A method B method C 

0 −0.46 ± 0.16 −0.35 ± 0.14 −0.28 ± 0.1 
1 −1.06 ± 0.29 −0.59 ± 0.3 −0.37 ± 0.25 
2 −1.83 ± 0.44 −1.01 ± 0.38 −0.49 ± 0.33 

 
 
 
 
 
 
 



Table 2. Groups statistics of Log10(1-R²) for the three studied methods with the three degrees: mean ± standard 
deviation 

 

degree j method A method B method C 

0 −0.27 ± 0.28 −0.05 ± 0.23 0.11 ± 0.24 
1 −1.47 ± 0.48 −0.52 ± 0.31 0.03 ± 0.54 
2 −2.99 ± 0.73 −1.37 ± 0.56 −0.2 ± 0.82 

 
 

First of all, taken into consideration the Log10(ε) and the Log10(1-R²), the lowest the value, the more accurate 
the method or the degree of integration. 

The general linear model one way ANOVA for repeated measures pointed out significant differences 
between the three methods (A, B and C) and the three degrees (0, 1 and 2). The post-hoc Tuckey tests indicated 
that for the methods A and B, the values decreased when the degree increased (degree 2 < degree 1 < degree 0). 
Concerning the method C, the results were lower for degree 2 than degree 1 and no significant difference was 
observed between the degree 1 and degree 0. 

Comparing the methods, for the degrees 1 and 2, for the both values of Log10(ε) and Log10(1-R²), the values 
were the lowest for method A, then B, then C (A<B<C). With regard to the degree 0, the method A was 
significantly lower than method B and no difference was observed between the other methods. 

Finally, when all methods and degrees were compared together, the lowest values of Log10(ε) and Log10(1-
R²), were observed for method A2. The later was significantly lower than method A1 and method B2. By 
comparing A1 and B2, we obtain p = 0.2719. The latter were significantly lower than the method B1. Moreover, 
if we compare B1 to C2 and C2 to C0, we obtain a significant difference. This can be summarized under the 
following form: 

A2 < B2 = A1 < B1 < C2 < C0 
As the results of method A gave unphysical values for inertia, the most accurate method was the method B2. 

C0 and C2 are the methods with torque value or double integration of torque corresponding to Winter’s data 
respectively. A0 and B0 are optimization methods on all IP or only trunk IP with Winter’s data.  

4. Discussion 
The purpose of this study was to adjust AP and IP of the human segments during squat jumping in order to 

minimize error in joint torque. The results indicated that the method A2 minimized the most the residual torque 
(ie. ε and 1-R2) following by the methods B2 and A1 being more accurate than the method B1. Nevertheless, the 
method A yields unrealistic Ij, therefore the most accurate method retained was the method B2. Consequently, 
the optimization focused especially on the HAT inertial and anthropometric parameters. It seems to be possible 
to optimize AP and IP of one segment when the others are known, but the simultaneous optimization of three AP 
and IP segments seems to be difficult. According to [36] IP and AP optimized for three segments cannot be 
considered as true, while if two of three segments are known, the IP and AP of the last segment can be 
calculated. 

The IP and AP found with the method B2 are close to the Winter ones but gave better residual joint torque.  
These differences could be obviously explained by the different position between the subjects performing squat 
jumps and cadavers. Especially the position of the arms was different, influencing the IP and AP of the HAT 
segment. [35, 36] used optimization techniques to solve inverse dynamic by determining numerical angles which 
minimize the difference between the ground reaction force measured and the ground reaction force calculated. 
They found segmental angles which minimize an objective function under equality and inequality constraints, by 



taking into account the difference ground reaction force measured and the ground reaction force calculated. 
From these angles, joint torques are determined. Our approach is different: techniques of [35, 36] to determine 
angle and torque were not applied. Only experimental displacements smoothed were considered. Then, with a 
direct inverse method, joint forces and torques were deduced. Finally, an optimization is made on the residual 
torque and force to determine values of AP and IP. This optimization is very simple and fast, since it is based on 
the least square linear method. It can be noticed that even if the residual torque or force are minimized, the error 
at each joint may be increased [35, 36, 37]. However, in our study and for the method B, we only optimized AP 
and IP of the trunk, consequently the joint torque and forces at the hip, knee and ankle joints remained 
unchanged. The major difference with classical way is the following point: it is possible to minimize residual 
torque, or its integral or double integral. The best method corresponds to the minimization of the double integral, 
which do not use the double derivative of angle. 

5. Conclusion 
The optimization of inertial and anthropometric parameters seems to be necessary when researchers use inverse 
dynamic methods. Indeed, cadaver data lead to errors in the calculi of the joint torques, especially in dynamic 
motions with greater acceleration. These ones could be reduced by optimization methods. The present method of 
optimization, based on the double integration of residual, has been applied on the HAT segment but could also 
be applied on more segments.  
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